Chapter 9

Controller Implementation

9.1 Controller Canonical Form

Lets look at the generic feedback control system in Fig. 9.1.
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Figure 9.1: Generic feedback control system

where the controller C'(s) is always a rational polynomial of s as

U(s)  aps™+ a1s™ '+ +am,
O(s) = — m . > m 9.1
(s) E(s) bos™ + bys" 1 + +1 = (0-1)

which can be rearranged as follows, where we have an expression for the
control signal u(s) in a configuration known as controller canonical form.

{bos™ + 015"+ ... + b5+ 13U(s) = {aps™ +a1s™ ' + ...+ an}E(s)

U(s) = {aos™ +ars™ '+ ...+ an}E(s)
—{bos™ + b1s" " 4 ...+ by_15}HU(s)
(9.2)
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9.2 Analog Implementation

The controller canonical form obtained in (9.2) can be physically realized
as shown in Fig.9.2, which shows that the controller is an arrangement of
(m + n) differentiators, (m + n) adders and one subtracter. Lets look at how
these mathematical operations can be electronically devised for controller

synthesis.
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Figure 9.2: Synthesis of control input U(s)

9.2.1 Operational Amplifier in Controller Synthesis

The operational amplifier (OpAmp) symbolized by a triangle with two in-
puts and one output is a specially designed transistor circuit, which is able to
perform mathematical operations such as addition, multiplications, differen-
tiation and integration. In fact, using OpAmps, resistors, and capacitors it
is possible to built controllers. Following two characteristics of the OpAmp
allows it to perform these mathematical operations.

e OpAmp has a very high input impedance, therefore, it does not draw
any current into it.

e OpAmp has no voltage difference between its two input terminals
namely; noninverting input(+) and inverting input(-).
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Positive Gain (non-inverting amplifier)

Figure 9.3 shows a gain (non inverting amplifier) circuit
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Figure 9.3: A positive gain constructed with an OpAmp

where input voltage (signal) is v; and output signal is v,. As there won’t be
any voltage difference between the two input terminals, -ve terminal will as-
sume a voltage v;, and as there won’t be any current going into the OpAmp,
current flows from the output terminal to the ground through the two resis-
tors. Therefore,

Vo — Ui U
R, R
Ri(vo —vi) = Ryv
Vo R1 + R2
o R
Vi) = Ty (93
1

Negative Gain (inverting amplifier)

Figure 9.4 shows a -ve gain

i gy b v.= Vi 5 Y

Figure 9.4: A -ve gain constructed with an OpAmp
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Using the two OpAmp characteristics mentioned, we can identify currents
and voltages as shown in the equivalent circuit. Current flows from v; to v,
through the two resistors. Therefore,

v Vo
R R
Vo RQ
v R

Vils) = V(o) (9.4)
1

Integrator with a Negative Gain

Figure 9.5 shows an integrator with a positive gain

Figure 9.5: An integrator with a negative gain constructed with an OpAmp

As OpAmp does not suck any, the current flows from from v; to v, through
thw two resistors. As +ve input terminal is grounded (0V), -ve input terminal
will also be assumed 0V. Then we can write KCL for -ve input terminal as

= +C dvc‘l’t(t) = 0, and transform into Laplace domain as follows.

1
EVi(S)"’CSVO(S) =0

Vis) = = (55) 2 (95)
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Differentiator with a Negative Gain

Figure 9.6 shows an integrator with a negative gain.

Figure 9.6: A differentiator with a negative gain constructed with an OpAmp

Grounding positive input terminal pulls the negative terminal to 0V. As
no current flows into the OpAmp, current path is from v; to v, through the
resistors. We can write KCL for the negative input terminal as C'%% (D) 4 volt)

dt R
0, which when transformed into Laplace domain
1
C'sVi(s) EVE)(S) =0
Vo(s)
= —RC. 9.6
Vi(s) ’ (9.6)

Error Signal with a Positive Gain

Figure 9.7 shows how error signal can be constructed using OpAmps.

Figure 9.7: Determination of error signal with a positive gain constructed
with an OpAmp

Both input terminals assume the same voltage v however, there won’t be
any current flowing between these terminals through the OpAmp. Therefore,



140 Controller Implementation

we have two independent current paths as shown in the equivalent circuit.
According to the first current path, we can write KCL for the common voltage
node as follows

Vg — VU VUy—0

—0

R, R,

Vo Vo 1 1 )
v v (1 1N 9.7
" R Qﬁﬁ4” (97)

From the other current path (a voltage divider) we can find an expression
for the common voltage v as

v =1 ( By > (9.8)

Ry + R;
By substitution from (9.8) to (9.8) for v
Vo Vg 1 1 ) ( R3 )
=4+ 2 = =) —= =0 9.9
Rﬁﬁ4<m+m R+ Rs) " 69

If we select resistors such that (R% + R%) < RllijS) = 7; then (9.9) will be-
come as follows

R R R
Ry
Vo = E(UI_UQ)
Vos) = 2401(s) - Vals)] (9.10)
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Summing Point (OpAmp Adder)

Figure 9.8 shows how two signals can be added using an OpAmp.

Figure 9.8: Summing point built using OpAmp adder circuit

As shown in the equivalent circuit, there are two current paths to the output
from both input terminals. Therefore, for the +ve terminal we can write KCI
as follows

— 0

7 R 7

U1 Vg Vo 1 1 1)
R R (S SN 0.11
TR TR <R1+R2+R3 v (9-11)

The other current path, which is a potential divider from -ve terminal to
output, we can find the following expression for v
Ry
= —
Ri+Rs
By substitution from (9.12) to (9.11) for v

v (9.12)

U1 Uy U, 1 1 1>( Ry )
G % (L 2 (2 )y = 0 (913
TR TR, <R1+RQ+R3 Rit R:)° (9-13)

This expression can be used to build various adders. We can use R; # Rs
if we want to give different weights for v; and vy. For simple addition, set
Rl = RQ = Rg = R, then

V1 + Vg (1 3 R4 )
el S L 9.14
r B Rmiir)" (9-14)
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If we further set Ry = R and Rs = 2R then,

n (LB,
R R R3R/)°
U1 + U2 1 2 .
R +<E_E>”” -
V1 + Vg = g
Vi(s)+Vals) = Vils) (9.15)

9.3 Digital Control

9.3.1 Discretization of the Controller Canonical Form

Controller canonical form in (9.1) can be written as the following differential
equation.

d"u(t)
dtn

d"tu(t)
din1

d™e(t) d™e(t)

b a
0 dtm U ggm—1

+ by

+ ...+ ape(t)

(9.16)
This continuous-time differential equation can be approximated with a dif-
ference equation by taking samples of u(t) as shown in Fig.9.9.

+...4ult)=ao

u(t)’

(k=2 (k=0T kT t
Figure 9.9: Sampling of u(t) at T'[s] interval

These samples can be used to determine approximate descrete-time equiva-
lents to u(t) and its derivatives as follows.

u(t) ~ wuy
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du(t)  up—up_y
a T
du?(t) R
a2~ T2

(9.17)

Similarly, descrete-time equivalents for e(t) and its derivatives are as follows

e(t) =~ ey
de(t) ek — ey
da T
de?(t) ep—2ep 1t ey
a2~ T2

(9.18)

Using (9.17) and (9.18), the descrete-time canonical controller can be written
as follows.

fug—1, Ug—o, oy Uk—p) + Uk = g(€ky €k—1, vy Chomn)
Uk = g€k, €1, s €hm) — f(Up—1, Ug—2, .., Uk—p) (9.19)

Actual implementation of this digital implementation is demonstrated in the
next section through an example.

9.3.2 Digital Controller Implementation

In recent times, programmable ICs (integrated circuits), which are known
as microcontrollers have gained popularity as they can be programmed with
discrete-time controllers quite effectively. Once programmed, these micro-
controller can implement the task of the controlling the plant. The most
common microcontrollers are PIC [10] and Atmega [11], and they come inte-
grated with their development software so that the user can choose a friendly
programming language (eg. PIC BASIC, or PIC C), or learn how to program
with the given language keywords. Once the program is written, debugged,
and compiled correctly, it can be downloaded from the computer to the mi-
crocontroller either directly, or using a programmer through serial, parallel,
or USB interfaces. The microcontroller programming environment is shown
in Fig.9.10. Once the digital controller is downloaded onto the microcon-
troller it is unplugged from the programmer and plugged into the plant with
proper connections of input pins to the reference r(t) and response y(t), and
output pin to the actuator u(t).
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Figure 9.10: Microcontroller programming using MPLab development envi-
ronment. This microcontroller is pre-loaded with a bootloader, therefore, it
can be directly connected to the MPLab through the download cable

9.4 Example

Lets try to electronically implement the servo controller in Fig.7.13. The
controller, which consists of a lag, a lead, and two gains is

Ul(s) _ (s +0.95) ) 85(8 + 10.8)
E(s) (s+0.1) " (s+37)
239.2(s% + 11.75s + 10.26)
s2+37.1s+ 3.7
64.6(s? + 11.75s + 10.26)

= 2
0.27s% +10.03 + 1 (9:20)

129.3

9.4.1 Analog Controller Synthesis

Therefore, control input U(s) is given by

U(s) = 64.6[s> + 11.75s + 10.26] E(s) — [0.27s% + 10.03s]U(s)  (9.21)
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which can be implemented as shown in Fig.9.11. This controller can be built
with four unity-gain differentiators, five gains, three summing points, and
one subtractor.

sTU(s) sUs)
e
+ 10.3
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SE(s) s E(s) +

[Figure 9.11: Construction of the servo controller in Fig.7.13

9.4.2 Digital Controller Synthesis

Controller in (9.20) can be written in time domain using (9.16) as

d?e(t) de(t)
15—+ 2 .22
a2 +11.75 o +10.26e(t)) (9.22)

d*u(t) 4103 du(t)

0.27
dt? dt

Fu(t) = 64.6(

and discretize using (9.17), and (9.18) as follows

U — 2Up—1 + Up—2 ek — 2€p—1 + ep_2
0.27 = ~ 646 ( =
+10.3% fup 1175 % + 10.26ek)
0.27 10.3 1 11.75
0.54 10.3 0.27 2 11.75 1
(T mat e () Aot e
(9.23)

Lets assume that we have our digital controller operating at 20Hz sampling
rate (sampling period T" = 0.05[s]), then (9.23) can be evaluated as follows
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(108 + 206 + 1)ug — (216 + 206)uy_; = 64.6 {(400 + 235 + 10.26)ey,

+108uy,_s —(800 + 235)ey,_1 + 400ej_o}
315ug — 422uy_ + 108u;_o = 64.6 {645.26¢), — 1035¢4_;
+400e;_»}
(9.24)

which yields to the following discrete-time (digital) controller

up = 132.3ex, — 212.3ep_1 + 82e,_o + 1.3up_1 — 0.3up_2 (9.25)

This digital controller can be programmed onto a microcontroller as shown in
Fig.9.12, microcontroller takes samples of the reference r(t) and response y(t)
through its analog input terminals at every T'[s] and calculates the control
input u(k), which is sent to the actuator through one of its output pins. Mi-
crocontrollers have built-in analog-to-digital converters (ADC) at the input
pins, but they usually do not have digital to analog converters (DAC) at the
output pins. If you want u(k) to be an analog signal, then an external DAC
should be used between the microcontroller output pin and the actuator.

microcontroller

plant
u(k) | 3(s+3} y(t) .
is+a)(s2+35+20) "
\
T

Figure 9.12: Use of a microcontroller to control the plant in Fig.7.13

9.5 Summary

The canonical form of the controller is useful in the controller implementa-
tion, which can be carried out either in analog (continuous-time) form, or
digital (discrete-time) form. In analog implementation, the canonical form
of the controller is synthesized using OpAmps. In digital implementation,
the canonical form is discretized into the equivalent difference equation, and
the resulting digital controller is programmed onto a microcontroller.



